首页科学前沿  

人工智能机器人的发展之不断超越的人工智能(4)

2016-05-22 22:55 浏览 评论

近年来,谷歌将大量资金、人力投入人工大脑研究中,并成功开发出了模拟人脑并具备自我学习功能的“谷歌虚拟大脑”。“谷歌虚拟大脑”是模拟人脑细胞之间的相互交流、影响而设计的,通过模拟人脑中相互连接、相互沟通、相互影响的“神经元”,由1000台计算机、16000个处理器、10亿个内部节点相连接,形成一个“神经网络”。当有数据被送达这个神经网络的时候,不同神经元之间的关系就会发生改变,这种关系的变化使得该系统对某些特定数据形成反应机制,从而让系统具备学习能力,并且能够在新输入的数据中找出与学到的概念相对应的部分,以达到识别的效果。这个有着自学功能的虚拟大脑系统在人工智能领域有着划时代意义,研究人员无需预先输入某一概念,它就可以自己决定关注数据的哪部分特征,注意哪些模式,从而自动从输入的大量数据中“领悟”这一概念,这与人脑的学习过程十分相似。

智能软件不止于围棋

所谓智能软件,是指能够产生人类智能行为的计算机软件。智能软件与传统软件最重要的区别就是:智能软件具有现场感应和环境适应的能力,还有表示、获取、存取和处理知识的能力,同时还能够采用人工智能的问题求解模式来获得结果。自从计算机诞生后,软件的设计开发便一直落后于硬件生产水平的发展,智能软件更是无从谈起。直到20世纪末,作为现实世界高水平的抽象——Agent软件系统的诞生,才大大加快了智能软件的开发。很快,基于Agent的实时道路交通导航系统模型、面向Agent的巡航导弹武器控制系统和多Agent敏捷调度系统相继被开发出来。目前,基于Agent的软件设计与开发已经成为人工智能学科的重要内容之一,而如何在软件设计与开发中更好地体现Agent的自治性、交互性、协作性以及可通信性等,又使智能软件的设计与开发成为了人工智能学科的新挑战。

 

人工智能机器人的发展之不断超越的人工智能

 

未来人工智能机器人资料图

 

如今,对于智能软件的开发正处于如火如荼的阶段。比如,击败李世石的“阿尔法围棋”便是一款智能软件,这款智能软件最重要的特征就是“深度学习”。深度学习的主要原理就是用一层神经网络把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就意味着“阿尔法围棋”会在与围棋高手的较量中不断提高自己的棋力。“阿尔法围棋”的另一个重要特征就是它具有两个不同的神经网络大脑:一个是“监督学习的策略网络”,负责观察棋盘布局试图找到最佳的下一步,相当于“落子选择器”;另一个是“价值网络”,负责评估棋局的整体局面并预测双方胜负,从而辅助落子选择器,这个叫“棋局评估器”。在“两个大脑”的配合下,“阿尔法围棋”击败了围棋界顶级高手,这绝对是人工智能的大突破。

 

人工智能机器人的发展之不断超越的人工智能

 

未来人工智能机器人资料图

 

此外,智能软件还在环保、商务和医疗等领域崭露头角。我们知道,现在空气污染备受关注,西门子中央研究院便开发了基于神经网络的空气污染预测软件。该软件利用了伦敦市遍布中心城区的约150 座监测站收集的包括湿度、太阳辐射、云层覆盖和温度等天气数据和一氧化碳、二氧化碳和氮氧化物等气体的排放测量数据,并将这些数据相关联。同时还将诸如工作日、周末、假期、展会和体育赛事等影响交通和污染物排放的活动编程到预测模型中,最终这款智能软件能够每小时预报伦敦市内150 个地点未来 3 天的空气污染程度,误差率不超过 10%,并且还可以推断出导致所预测空气污染的主要原因。

相关阅读
精选推荐
精彩推荐